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Geologic consequences of globe-encircling
equatorial currents

Paul W. Jewell
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112

ABSTRACT

Many black shales, phosphorites, and cherts that formed at low paleolatitudes on the
North American continent during the late Paleozoic were a direct consequence of equatorial
upwelling and an equatorial undercurrent in an ocean that spanned much of the globe. In
equatorial parts of modern oceans, wind stress divergence leads to high surface produc-
tivity. Sinking organic matter is remineralized in the strong, eastward-flowing equatorial
undercurrent. The undercurrent thus acts as a “nutrient-trap” that becomes progressively
oxygen poor and nutrient rich as it moves eastward. The late Paleozoic global ocean was
60% to 80% wider than the modern Pacific Ocean (~24 000 km total width). The nutrient-
trapping equatorial current system of this globe-encircling ocean was probably anoxic and
may have been sulfate reducing. Nutrient-rich, anoxic water from the undercurrent would
have had direct consequences for the genesis of black-shale facies in Devonian and Penn-
sylvanian epicontinental seaways as well as possibly providing the source water for coastal

upwelling in settings such as the Phosphoria sea.

INTRODUCTION

Ever since plate tectonic theory gained widespread acceptance,
earth scientists have used the positions of continents to study and
explain various aspects of Earth’s climate system throughout geo-
logic time. For example, the concentration of extensive land masses
near the southern pole during the late Paleozoic is believed to have
been responsible for the formation of continental ice sheets, a gen-
erally cooler climate, and sedimentary cyclothems preserved in con-
tinental interiors (e.g., Crowley and North, 1991). Assembly of the
supercontinent Pangea probably led to “megamonsoonal” atmo-
spheric circulation (Kutzbach and Gallimore, 1989), which in turn
had a significant influence on the character of late Paleozoic to early
Mesozoic continental sedimentary sequences (Parrish, 1993). How-
ever, the absence of continental glaciation due to the positioning of
the continents at middle and low latitudes during the Cretaceous is
believed to have been at least partly responsible for the equable
climate of that geologic period (Barron and Washington, 1982,
1984).

Although the positions of the continents have long been rec-
ognized as a critical piece in the Earth history jigsaw puzzle, con-
siderably less attention has been given to the consequences of dif-
fering ocean basin configurations throughout geologic time. This is
at least partly due to the lack of a detailed pre-Jurassic deep-sea
record. Reconstruction of this part of the geologic record must rely
on deep-sea sedimentary deposits that happened to be preserved on
continents or on marginal marine deposits that may or may not be
representative of the character of the ocean as a whole. Deciphering
the paleoceanography of pre-Jurassic oceans must therefore rely on
indirect methods. For example, Parrish (1982) effectively explained
the positions of upwelling zones in Paleozoic oceans as functions of
continental positions and atmospheric pressure cells. In recent
years, numerical modeling of ancient oceans (particularly general
circulation models) has been used effectively to simulate Paleozoic
paleoceanographic conditions (Crowley et al., 1989; Kutzbach et al.,
1990; Moore et al., 1993).

This paper calls attention to the role that equatorial upwelling
and undercurrent systems may have played in the formation of black
shales, cherts, and phosphorites from the late Paleozoic Era. It is
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proposed here that many of these rocks in North America are a
direct result of the positioning of the continents in conjunction with
physical and chemical oceanographic features that are well docu-
mented in modern equatorial oceans and that were amplified in an
ocean that spanned much of the globe.

NUTRIENT TRAPPING IN THE EQUATORIAL OCEAN
Modern Pacific Ocean

As the largest modern ocean basin, the Pacific Ocean will be
examined in detail prior to considering how the larger, late Paleo-
zoic ocean may have behaved. The equatorial current system of the
modern Pacific consists of three westward-flowing surface currents
(Northern Equatorial Current, Northern Equatorial Countercur-
rent, and Southern Equatorial Current) and the eastward-flowing
Equatorial Undercurrent (e.g., Pickard and Emery, 1983). Up-
welling at the equator is caused by the divergence of trade winds
coupled with a change in sign of the Coriolis force (Ekman pump-
ing). Surface winds and Ekman pumping are most intense in the
central part of the Pacific (Fig. 1A).

The Pacific Equatorial Undercurrent is a direct result of the
easterly trade winds, which raise the surface-water elevation to the
west (Fig. 1B). The thermocline adjusts hydrostatically to this sur-
face gradient, causing meridional subsurface pressure gradients
(Gill, 1982). Away from the equator, these pressure gradients are
geostrophically balanced by the Coriolis force. At the equator, the
Coriolis force vanishes and flow is directly down the pressure gra-
dient (toward the east). The most intense parts of the Pacific Equa-
torial Undercurrent coincide with the depth of the thermocline
(~200 m to the west, which rises to 100 m depth in the east)
(Fig. 1C). Undercurrent velocities can be as high as 1.5 m/s (Pickard
and Emery, 1983).

Recent observations and modeling of the geochemistry of
equatorial waters have demonstrated how westward-moving surface
currents and eastward-moving undercurrents give rise to a nutrient-
trapping mechanism along the equatorial axis of major ocean basins
(Najjar et al., 1992). Ekman pumping brings nutrient-rich subsur-
face waters into the photic zone near the equator. Biologically pro-
duced particles sink below the photic zone and are advected east-
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Figure 1. Surface wind shear stress (A), dynamic height (B), and sub-
surface temperature (C) in °C of modern equatorial Pacific region (from
Knausse, 1978; Open University, 1989). Contour interval is 1 °C;
crosses represent measured depth of equatorial undercurrent in (C).

ward by the equatorial undercurrent. The result is increasingly
nutrient rich water to the east, which in turn increases surface pro-
ductivity in the same direction (Fig. 2). The higher surface produc-
tivities further enhance the subsurface nutrient-trapping effect.
Upon encountering a continental land mass, the Equatorial Under-
current is deflected north and south. South of the equator, this
nutrient-rich water forms the source for the Peru-Chile coastal up-
welling system (Wyrtki, 1963; Toggweiler et al., 1991), which has
some of the highest surface productivities in the world ocean
(Berger, 1989).

The equatorial nutrient-trapping mechanism is found in both
the Pacific and Atlantic oceans, although it is most pronounced in
the Pacific. This is due in part to the higher overall nutrient con-
centrations in the Pacific relative to the Atlantic, but it is also a result
of the Pacific Ocean’s larger size, which allows the nutrient-trapping
mechanism to operate over a greater longitudinal distance.

The depth of the oxygen-minimum zone in the equatorial Pa-
cific Ocean is generally deeper (300-400 m) (Levitus, 1982) than
the depth of the undercurrent (100-200 m) (Fig. 1C). In the eastern
equatorial Pacific, dissolved oxygen concentrations are ~60-100
pmol/L in the equatorial undercurrent, whereas very low oxygen
concentrations (<10 pmol/L) and nitrate reduction are character-
istic of the deeper oxygen-minimum zone (e.g., Codispoti and Rich-
ards, 1976). Under exceptional cases off the Peruvian coast, all avail-
able oxygen and nitrate are consumed in the oxygen minimum, and
hydrogen sulfide (H,S) is formed (Dugdale et al., 1977).
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Figure 2. A: Surface nitrate concentrations in equatorial Pacific (from
Toggweiler et al., 1991). B: Surface productivity in equatorial Pacific
(from Berger, 1989; Najjar, 1992).

Late Paleozoic—Early Mesozoic ocean

The assembly of all the continents into a single landmass (Pan-
gea) during the late Paleozoic to early Mesozoic and the resultant
ocean (Panthalassa) that spanned much of the globe led to climatic
and oceanographic conditions that may have been unique in geo-
logic history. Earlier periods of the Paleozoic (Devonian through
Mississippian) were also characterized by a single ocean that
encompassed >180° of longitude (Scotese and McKerrow, 1990).
The discussion presented here is intended to explain how certain
aspects of marginal marine basins of North America were related to
the geochemistry of a single large ocean that existed from the De-
vonian through the Permian. During the early Mesozoic, the Pan-
gean continent was largely emergent (Vail et al., 1977); thus the
marine sedimentary record for that period of time is not as extensive
as that of the late Paleozoic.

The importance of equatorial upwelling to the formation of
organic-carbon-rich rocks and phosphorites in continental settings
of late Paleozoic age has been recognized by some researchers (e.g.,
Parrish, 1982; Witzke, 1987). What has not been fully appreciated is
the geochemical consequence of the coupled equatorial upwelling-
undercurrent system. This is partly because much of the work on
equatorial chemical dynamics in the modern ocean has only recently
appeared in the literature (e.g., Toggweiler et al., 1991; Najjar et al.,
1992; Najjar, 1992).

The intensity of the equatorial nutrient-trapping phenomenon
can be evaluated by considering meridional variations in oxygen
from the modern Pacific Ocean (Fig. 3). Oxygen gradients at 200 m
depth (within the undercurrent and slightly below it) are ~0.75
pmol/L per degree of longitude and ~1.0 wmol/L per degree of
longitude at the 300 m depth. In the modern eastern equatorial
Pacific, oxygen concentrations approach zero, and nitrate reduction
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is widespread (Codispoti and Richards, 1976). At similar depths of
the late Paleozoic—early Mesozoic ocean, nitrate would most likely
be exhausted and sulfate reduction would commence (Fig. 3). As
previously mentioned, sulfate reduction has been observed on oc-
casion in the modern equatorial Pacific (Dugdale et al., 1977). In a
much wider Paleozoic ocean, sulfate reduction would logically have
been much more common.

Is it reasonable to expect that the chemical and physical dy-
namics of the globe-encircling equatorial ocean were similar to
those of the modern ocean? As mentioned above, the modern Pa-
cific Equatorial Undercurrent is a result of the zonal, easterly trade
winds, which raise surface water to the west and the thermocline to
the east (Fig. 1). In a larger ocean basin, these meridional sea-
surface and thermocline gradients might have been larger or smaller
(due to different trade-wind strength) than those in the modern
Pacific and undercurrent velocities would therefore have been more
or less intense. This is not critical from a geochemical standpoint
because the nutrient trapping phenomenon would continue to op-
erate over the much wider ocean basin as long as the zonal wind
structure of Earth was the same as it is today.

DISCUSSION

Black-shale and phosphorite facies have long been recognized
as a common feature of the Paleozoic Era. A large fraction of these
deposits are Cambrian-Ordovician in age (Schopf, 1983) and may be
related to anoxic episodes of the global ocean (Berry and Wilde,
1978). Certain black-shale and phosphorite episodes documented
during the late Paleozoic, however, may be related to the globe-
encircling, nutrient-trapping model outlined above. Some details of
the more enigmatic of these deposits from three specific geologic
periods are discussed here.

Late Devonian

Black shales and phosphorites are a common feature of the
Late Devonian of North America. Current paleogeographic recon-
structions (Witzke and Heckel, 1988; Scotese and McKerrow, 1990)
show that black shales of the Catskill basin of eastern North Amer-
ica were located at ~lat 30°S, and would thus not be influenced by
an influx of water from equatorial currents. Freshwater flow from
the Acadian orogeny to the south has been evoked as a mechanism
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for anoxia in this basin (Ettensohn, 1985). A more extensive Late
Devonian black-shale basin existed in western North America from
Alaska to southern California (Witzke and Heckel, 1988). In addi-
tion to black shales and phosphorites, bedded barite is common in
these rocks (Papke, 1984; Murchey et al., 1987). Open-ocean sulfate
reduction at depths of 300-500 m has been advocated as a mech-
anism that would have enhanced dissolved barium concentrations
and ultimately caused deposition of the bedded barite deposits in
deep-water facies of Nevada (Jewell and Stallard, 1991; Jewell,
1994). The analysis presented here provides a mechanism for pro-
ducing intermediate-depth water that was anoxic, and possibly sul-
fidic (Fig. 3).

Middle to Late Pennsylvanian

Cyclic deposition of black shales in the continental interior of
North America from the Middle to Late Pennsylvanian is well doc-
umented (Heckel, 1977, 1991). Paleolatitude reconstructions place
the Pennsylvanian black-shale belt between the equator and lat
15°N. Black-shale deposition is believed to have occurred during
glacial highstands as a result of incursion of oxygen-minimum water
from the open ocean in conjunction with freshwater runoff from the
adjacent continent. These Pennsylvanian black shales are extraor-
dinary for their extremely high organic carbon and metal concen-
trations and widespread areal extent (>500 000 km?) (Coveney and
Martin, 1983; Heckel, 1991).

High organic-carbon accumulation rates of the Pennsylvanian
black shales are attributed to upwelling within the seaway (Heckel,
1977, 1991). The paleogeographic location of these rocks does sug-
gest a relation to equatorial upwelling. It is also worth noting that
the opening of the Pennsylvanian epicontinental seaway was west-
ward facing and thus would be in position to receive nutrient-rich,
oxygen-deficient (possibly anoxic) water from the equatorial current
system of the Panthalassa ocean (Fig. 3).

Permian Phosphoria Formation

The Permian Phosphoria Formation of the intermountain re-
gion of North America contains more phosphorus than the modern
world ocean (Piper and Codispoti, 1975). Although average phos-
phorus accumulation rates for the entire formation are not partic-
ularly anomalous in relation to other modern and ancient phospho-
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genic provinces (Filippelli and Delaney, 1992), specific members of
the Phosphoria (e.g., the Meade Peak Member) have very high
phosphorus accumulation rates. The paleolatitude of the Phospho-
ria basin is ~20°N (Scotese and McKerrow, 1990). Genetic theories
regarding the Phosphoria have generally involved coastal upwelling
(see review by Sheldon, 1981).

The analysis presented here suggests that the source water for
the Phosphoria upwelling system may have been nutrient-rich water
from the globe-encircling equatorial undercurrent. The modern an-
alog would be the Peru upwelling system, at 15°S, the source of
which is the Pacific Equatorial Undercurrent (Wyrtki, 1963; Togg-
weiller et al., 1991); the system has surface productivities (in carbon)
as high as 1400 g- m™2-yr ! (Packard et al., 1983). Higher nutrient
concentrations in the source water during the Permian would have
led to phosphorus accumulation rates higher than those observed in
the modern Peru system. This is in agreement with comparative
accumulation data from modern and ancient phosphogenic prov-
inces (Filippelli and Delaney, 1992, Table 1).
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